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Abstract  

The time operators corresponding to the whole Dirac and Klein-Gordon fields and the 
expressions of the time impreeisions associated to the pairs annihilation and subse- 
quent production processes have been evaluated. In these conditions there exists the 
possibility of assuming the existence of a threshold behaviour of the above processes. 
Certain peculiarities of the threshold behaviour obtained in this way are related with 
certain results obtained by virtue of the imprecision description of the coulombian inter- 
action. Finally, the meaning and role of the electromagnetic natural space unit is also 
discussed. 

1. Introduction 

In line with previous papers (Papp, 1973a, b), we have to consider that the 
quanto-mechanical description of  time measurements implies the existence of  
a binary ent i ty whose imaginary part expresses, in a 'natural '  way (Bohm et  at., 
1970), the objective imprecision bound of  the measurements performed. This 
binary enti ty expresses, in fact, the extension of  the usual hermitic observable 
in the conditions of  which the presence and role of  the measuring apparatus 
are considered. As a consequence, the possibility exists of  defining certain 
high-energy structural effects implied by the existence of  natural space and 
time units as lower bounds of  the corresponding imprecisions (Papp, 1973a). 

There also exists the possibility of  introducing into the mathematical  formal- 
ism of  quantum mechanics, or of  quantum field theory,  certain parameters 
possessing-direct ly or ind i rec t ly - the  meaning of  discrete-space or discrete- 
time quanta. In this sense non-local field theory, the non-definite metric 
method,  the Lagrangians with higher derivatives, and non-linear field theory 
(see, e.g., Vialtzew, 1965) are mutually correlated methods which imply or 
support,  in one way or another, the existence of  a discrete space. When per- 
forming the binary space-time description within quantum theories implying 
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or supporting the existence of a discrete space-time, agreement between the 
existence of discrete space-time quanta and the existence of the space-time 
imprecisions is needed. In these conditions results may be obtained which 
express peculiarities of a unified quanto-mechanical description of both space- 
time and matter. 

Continuing the imprecision description in previous papers (Papp, 1973a, 
b), the time operators of the Dirac (D) and Klein-Gordon (K-G) fields are 
evaluated in Section 2. The behaviour of the above operators under time- 
inversion is analysed in Section 3. Section 4 defines the proper-time operators 
of the D and K-G fields. The meaning and form of the time- and proper-time 
imprecisions is discussed in Section 5. In these conditions one proves the exist. 
ence of a time-imprecision contribution associated with the pairs annihilation 
process. The threshold velocities implied by the existence of the above time- 
and proper-time imprecisions are also calculated. Section 6 considers resonance- 
emission approximation of the so-implied high-energy particle production 
processes. Explanations of certain particle production processes are proposed. 

In close connection with the above results the quanto-mechanical peculiari- 
ties of the coulombian interaction are analysed in Section 7. A particular con- 
nection between the threshold behaviour implied by the time-imprecision 
description and the threshold behaviour implied by the imprecision description 
of the electrostatic potential energy may be established. In this respect the 
existence of a certain effective discrete-space structure is needed. Finally, the 
definition of the natural 'electromagnetic' space unit is accomplished in 
Section 8. 

Throughout this paper the collision processes between the charged particle 
and the charged anti-particle are considered in the centre-of-mass system. We 
shall assume that the particle and the corresponding anti-particle possess the 
same rest-mass. The interaction representation is also used. 

2. Time Operators o f  the D and K - G  Fields 

We shall define the time operator corresponding to the D field of the free 
evolution along the axis Oxl  and to a given value of the spin by the relation 

J-~s)(t) = f dx l ¢ts)*(x l, t )x ~ t ~ ) ( x  ~, t) (2.I) 

where 

~tS)(Xl, t)=(21r)-112 ~ dplJ(~o) [b(pl, S)bl(pbs)expipx 
+ d*(p l ,  s)v(pl,  s) exp ( - i px ) ]  (2.2) 

represents the whole operator of the D-field operator, px  = p i x l -- Po t, 
Po = (PI z + moZ) 1/2 and where, as previously (Papp, 1973b), ~i "1 expresses 
the inverse-velocity operator. 
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Using the spinorial relations 

u*(pl, s')u(pb s) : v~{(pl, s')v(pl, s) : Po 6s,s (2.3) 
mo 

u*(-pl,  s')v(pl, s) : v*(-pl, s')u(px, s) = 0 (2.4) 

v,(pl, s,) ~_~_v(p,,s)=u,(pl, s,) ~_~_u~l,s)= pl 5~,~ (2.5) 
opl Opl 2moPo 

u*(-p, ,s ')  v(p, ,s)=v*(-pl,  s') u(pi, s)= ~-p-pofS'S (2.6) 

where the relations (2.5)-(2.6) maintain theirs form only in the one-dimensional 
case, one obtains 

~-'ts)(t) = TtS)(t) - TtS)(t) + It s) - I(1 s)* (2.7) 

as soon as the D-field production and annihilation operators obey, in the weak 
sense, the boundary conditions 

lim p11/Zb(pl, S) = O, lim b(p l ,  s) = 0 (2.8) 
p~-~O p~oo  

lim p-~llZd(pb s) = O, lira d(pl, s) = 0 (2.9) 
p ~ O  p~-*~ 

In these conditions 

TtS'(t)= f dplb*(pl, S) [ip° -~-~ S-i-S-~ | ~ " moo ] [ P, . . l + t - l t ,  l vo j  b(pl's) (2.10) 

expresses the binary time operator of the D particles, 

~ts)(t)= f dpld*(p~,s) [iP° ~-~--+ ] [ P~ OPl t d(pbs) (2.11) 

expresses the binary time-operator of the D anti-particles, and 

t-n o 
I(1 s) = i f dpl ~ b*(pl, s)d*(-pb s) (2.12) 

represents a time-imprecision operator whose meaning will be subsequently 
analysed. We may thus conclude that by virtue of relations (2.5)-(2.6), the 
time operator of the D field (corresponding to an arbitrary direction) may be 
adequately defined only in the one-dimensional case. 

Defining similarly the time operator of the one-dimensional K-G field by 
the relation 

~ - l ( t )  : i f dXle~*(Xl, t)O+~tXlb~l~(x1, t) (2 .13 )  
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where 

(b(xj, t) = (27r) -qz ; apl x/(2po) [a(pa) exp ipx + b*(pl) exp (-ipx)] (2.14) 

expresses the field operator of the whole K-G field, one obtains 

J-~(t) = Ta(t) - T~(t) + Ii - I* (2.15) 

where 

and 

. m o  2 

[ Pl 3pl 
(2.16) 

Tl(t)= f dplb*(pl) [iP° O-~-+ t] b(pl) (2.17) 
k pl 3pl 

represent the previously defined time operator of the K-G particle field and 
the time operator of the K-G anti-particle field, respectively, and where 

I1=i f dpa~poa*(p,)b*(-p, ) (2.18) 

expresses a certain time-imprecision operator. In agreement with the general 
requirements to perform, along an arbitrary direction a consistent field- 
theoretical time description (Papp, 1973b), we have restricted ourself to the 
one-dimensional case. It has been assumed that the boundary conditions 
needed are fulfilled. 

3. Behaviour of the Time Operators under Time-Inversion 
In agreement with the usual results (Bjorken & Drell, 1965) the annihilation 

operators b(p, s) and d(p, s) transform under time-inversion as 

q/b(p, s)q/-1 = - b ( - p ,  -s )  exp ia+(p, s) (3.1) 

~d(p ,  s)q/-1 = - d ( - p ,  -s )  exp [-/a_(p, s)] (3.2) 

where ~# expresses the unitary operator of the time-inversion and where 
a+(p, s) and a_(p, s) are phase functions corresponding to the particle and 
anti-particle respectively. 

But it may be proved that 

Tu(p, -+-s) = exp ia+(p, s)u*(-p, -Ts) = ~u*(-p, ~s) (3.3) 

Tv(p, +s) = exp/a_(p, s)v*(-p, ~s) = +v*(-p, T-s) (3.4) 

where T = i717, is the quanto-mechanical operator of the time-inversion opera- 
tion. Changing the sign of the momentum p, relations (3.3) and (3.4) remain 
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valid. As a consequence we may neglect the momentum dependence of the 
a+ and a_ phase functions. In these conditions we have 

j TP)(t)j  -1 = _Tf-S)(_t), J ~ P ) ( t ) J - '  = -:Tf-~)(-t) (3.5) 
, , ,¢.Tf,)y-,  = _Tf-~), yyf~),y-1 = _if-s), (3.6) 

so that the behaviour of the whole time operator under time-inversion is given 
by 

of  J t s ) ( t ) J  - '  = -oS ~ t - s ) ( - t )  (3.7) 

where J = q ¢ ~ a n d  where Jg'expresses the complex conjugation operator of 
the e-numbers. According to relations (3.3) and (3.4) the equality 

exp i [a+(s) + a_(s)] = - 1 (3.8) 

has been used. The sign changes of  the spin variable and time operator so 
implied agree with the usual peculiarities of the time-inversion operation. In 
this respect relations (3.5)~(3.7) may also be considered as testifying relations 
of any time operator associated with a free field. If we consider the existence 
of a momentum dependence of the a+ and a_ phase functions, like relations 
(3.1) and (3.2), the appearance under time-inversion of certain additional 
time-shift contributions would be implied. Thus 

Po <,<+O,,,s) 

- f s ) d e , , , )  s) 
+-s ~ Pl opl 

where Y{°)(t)= f~) ( t )  + xI-~)(t). 
Commencing with relations 

(3.9) 

ql a(p l)q 1-1 = a ( - p  l) 

~lb(p~)qi -~ = b(-p~) 

(3.10) 

(3.11) 

which define the time-inversion operation of the free K-G field, it may be 
proved-excluding the presence of the spin-that  the behaviour of the K-G 
time-operator under time-inversion is similar to that of the D field. 

4. Proper- Time Operators o f  the D and K-G Fields 

The proper-tim e operator of the K-G field corresponding to the quanto- 
mechanical proper time 

= x u p u ~ D v  )-1/2 (4.1) 
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where Pu = -i@/~xu),  which is identical, up to the sign, with the one previ- 
ously used (Papp, 1972), may be defined as 

Sg3(t) = i f d x ~ ( x ,  t)Otg~a(x, t) (4.2) 

where the three-dimensional case has been considered. Performing the calcula- 
tions it results 

Z 
5a3(t) = S3(t) - ff3(t) + I3 - I f  (4.3) 

where 

S 3 ( t ) = f d p a , ( p ) [ i p _  0 t 5 i ]  
too" 0p mo Po-- + 2mo a(p) (4.4) 

is the proper-time operator of the K-G particle field, 

S3(t) = dpb*(p) i . - mo - -  + b(p) (4.5) 
[ o P Po 2m 

is the proper-time operator of the K-G anti-particle field, and where 

i f dpa*('p)b*(p) (4.6) I3 = - 2mo 

expresses a certain proper-time imprecision operator. In order to obtain the 
above results the use of the boundary condition referring to the vanishing of 
the creation and annihilation operators at the origin is not implied. The calcu- 
lations may be similarly performed in the two- and one-dimensional cases. It 
may be proved that under time.inversion 

j S a / ( t ) j - i =  _5a/(_t)  ' ] = 1, 2, 3 (4.7) 

and this behaviour agrees with that obtained for the time operators. 
In contrast to the above results, the definition of the D field proper-time 

operator needs wider discussion. In this sense, if we try to define, irrespective 
of the spin-value, the proper-time operator of the three-dimensional D field as 

5P~°)(t) = f dx¢~°)*(x, t)g~t°)(x, t) (4.8) 

there would arise, as a consequence of the relations 

v*(-p, - s )p .  ~ u(p, s) = P__L (4.9) 
op 2po 

P3 
,*( -p,  -s)p.  ~ v(p, s) = --2t, o (4.10) 

interference contributions in respect of the spin variable. Consequently, the 
proper-time operator, corresponding to a well-defined spin value, cannot gen- 
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erally be defined in the three-dimensional case. Performing the catctflations in 
the two-dimensional case, when 

v* , _Pl - iP2 
u*(-p,s')p.~p__ (p s) -2po 6s's (4.11) 

3 
v*(-p,  s ')p. ~pp u(p, s) _Pl2po + tp2 6,s  (4.12) 

and using the relations 

u*(.p, s ')p. u(.p, s) = v*(p, s ')p. v(p, s) = 2moPo 6s's (4.13) 

which are valid irrespective of the dimension, one obtains 

moOpa mo3p2 Po moJ b(pl'p2's) 

_ f dp,dp2d*(pl, p2, s ) [ iP l  3__3+ipz 3 t-~o d(p,,p2, s) 
[ mo Opl mo 3p2 

+ i f dpldp2 
p l -  ip2 

2po2 d(-pl ,-p2,  s)b(pbp2, s) 

Pt + i~2 
- i ( J dpldp2 ~po2  b*(-pl, -P2, s)d*(pb P2, s) (4.14) 

where a well-defined value of the spin has been considered. Consequently 

-1 P2 
JSg~g~(t)j = -5~-~)(--t) + 2 f dpldp2 2~o2 d(-pl, -P2, s)b(pb P2,-s) 

f P2 b*" + 2 j dp,dp2 ~ t -P, , -P2,-s)d*(p, ,p2,-s)  (4.15) 

so that the two-dimensional proper-time operator rigorously fulfills the require- 
ments needed by the time-inversion only in the one-dimensional case, or approxi- 
mately in the two-dimensional case when the presence of the last two terms in 
expression (4.15) may be neglected. In this respect there arises a certain 
difference between the proper-time operators of the D and K-G fields. 

5. Time-Imprecision Contributions of  the Time and Proper- Time Operators 

In order to obtain the time imprecisions let us define the free particle-anti- 
particle states of the D and K-G fields as 

- ,  s) = f dpldpzf(pl, s)f(p2, s)b*(pl, s)d*(p2, s)lO> (5.1) l+, 

lO 
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and 

I+,-> = ~ dp~dp2g(p~)~.p2N*(p,)b*(p2)I0> (5.2) 

respectively'. The functions f(pl,  s) and g(pl)_denote, in the momentum repre- 
sentation, the particle amplitudes, whereas f(p i, s) and g-(p 1) are the anti- 
particle amplitudes. 

In the coordinate representation the particle amplitudes take the form 

$(+)(xl, tl, s)=(2rr) -112 f de1 u(pt, s)f(pl, s) expipx (5.3) 

~o(+)(xl, t) (2rr)-1/2 f 
1 

= dpt ~ g ( P t )  exp ipx (5.4) 

The anti-particle amplitudes are given by 

2( °0 ~(+)(Xl, t, s) = (2rr) -1/2 f de1 u(pb s)f(pl, s) exp ipx (5.5) 

and 

1 
~+)(Xl, t) = (21r) -I12 f dpl x/(2po)g-(Pt) exp ipx (5.6) 

respectively. We shall consider that the particle amplitudes f(pt, s) and g(pl) 
take appreciable values only around a certain positive momentum average 
(el). 

The one-dimensional free D equation possesses, besides the positive energy 
solution ~(+)(x 1, t, s), the solution 7o ~(+)*(x 1, - t ,  s) obtained by time-inversion. 
In these conditions we may consider that the anti-particle amplitude ~(+)(xl, t, s) 
has to be defined by the above-mentioned time-reversed solution: 

~(+)(X1, t, s) = 70 ~(+)*(x t, - t ,  s) (5.7) 

so that 

f(Pl, s) = f * ( - P b  s) (5.8) 

In respect of the particle-anti-particle elastic collision processes we may 
consider that the functions q/+)(xl, t, s) and ~(+)(xt, t, s) describe, in the centre- 
of-mass system, the incoming (t ~ 0) evolution of the free particle and anti- 
particle respectively. Assuming that the particle-anti-particle interaction is 
described by a S-matrix, or by an interaction Hamittonian, which is invariant 
under time-inversion, it may be proved that relation (5.8) also maintains its 
validity in respect with the outgoing (t >> 0) states. Indeed, denoting with 
q/+)°Ut(xl, t, s) and ~(+)°Ut(xb t, S) the outgoing particle and anti-particle 
amplitude, respectively, the equality 

~(+)°Ut(xl, t, s) = 70 ~(+)°ut*(x l, - t ,  s) (5.9) 
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becomes 

f°Ut(p 1, s) ~- f(Pl, s) exp 2i6(pl) = f°ut*(--pb s) (5.10) 

where-in agreement with the usual results of collision theory-the phase-shift 
6(pl) is an odd function in respect to the momentum and where f°Ut(pl, s) 
and ~oUt(p 1, s) are the particle and anti-particle amplitudes in the momentum 
representation, respectively. Thus, up to the phase factor exp 2i6(pl), equali- 
ties (5.8) and (5.10) are identical. As one would expect, the anti-particle 
amplitude may be also obtained by the charge-conjugation transformation 

~(+)(x,, t, s) = CTot)(-)*(xl, t, s), C = iT:go (5.11) 

of the negative energy solution 

2( o);0 ~)(-)(X1, t~ S) = (217") -112 f dpl V(pl, s)f*(pl, S) exp (--ipx) (5.1,2) 

In the case of the free K-G field we may similarly define the anti-particle 
amplitude ~(+)(xb t) by the time-reversed particle amplitude gv(+)*(x 1, - t ) ,  
thus obtaining the result 

g(p,) = g*@p,)  (5.13) 

As for the D field, this equality may be attributed to both the incoming or 
outgoing evolutions, corresponding to the elastic particle-anti-particle collision 
process. We are now able to evaluate the time imprecisions of the D and K-G 
fields. The averages so obtained will be evaluated in respect to the particle 
amplitudes. 

First, there exists the imprecisions of the time measurements performed on 
the free evoluting particle and anti-particle. These imprecisions are given, in 
agreement with methods previously used (Papp, 1973b), by the imaginary 
parts of the corresponding time-operator averages in respect to the single 
particle and single anti-particle amplitudes, respectively. Thus 

?m:\ 
~r(s) ~ Im (% s[ r t % ) t + ,  s> = ~ 2 p ~ p o  A.~) - ,.~ (5.14) 

for the D field and 

6r =- Im (+IT, ( t ) l+)  = (5 .15)  
\2p ,  Po /  

for the K-G field, where the particle amplitudes have been normalised to 
unity. The time imprecisions of the particle and anti-particle states are identi- 
cal and also possess the same form in D and K-G fields. 

Evaluating the real part of the time-operator average in respect to state 
(5.1) one obtains 

Re (% - ,  s[9-~s)(t)[+, - s) = - 2 ?  p° ~ arg f(p,,  s) k) (5.16) 
' k ~ l  OPl /(=) 
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This result means that the free evoluting particle-anti-particle pair could be 
formally considered as an object of the time-measurement, with the imprecision 
given by 

/ r n o  2 \ 
- Im ( % - , s l J ' ~ s ) ( t ) [ + , - , s ) :  2 ~ 2 ~ / ( s  , - ~ -  (5.17) 

But the form of relations (5.16) and (5.17), and especially the presence of 
factor 2, recognise that the objects of the time-measurement are in fact the 
free evoluting particle and, respectively, the free evoluting anti-particle. A 
similar discussion is also valid for the K-G field. 

Calculating the matrix element of the I t  s) operator between the particle- 
anti-particle state [+, - ,  s) and the vacuum state 10), one obtains, using 
expression (5.8), the result 

~ts) = - i  ( + , - ,  s l't(s)[ 0 = m~-~p lpo~(s ) (5.18) 
t ~ 

The above average does not depend on the phase of the f(p 1, s) amplitude 
or on the time parameter t. In these conditions the existence of an interaction 
supporting the pair annihilation process may be implicitly assumed. We are 
thus able to interpret the average (mo/2plpo)(s) as the imprecision of the time 
measurements due to the virtual existence of the pairs annihilation process. 
Such a process arises, for example, in the fourth order approximation of the 
elastic particle-anti-particle collision-process. Consequently, the above im- 
precision becomes operative at the threshold energy (velocity) of the inelastic 
particle-anti-particle collision process. In this respect the threshold velocity 
has necessarily, to be attributed to the pair annihilation process and also to the 
subsequent production process of other particles. The evaluation of such a 
threshold velocity may be obtained in the usual manner, attributing to the 
constant ~/2moc 2 the role and meaning of the natural time unit in respect to 
the imprecision (mo/2plPo)(s). 

Commencing with the inequality 

( t o o  ; ~> 1 (5.19) 
\2plPo/(s) 2too 

we may conclude that the threshold velocity investigated is identical with the 
previously encountered velocity v(1) ~ [ x/(5) - 1]/2 c. Attributing, by virtue 
of point (f) in the previous paper (Papp, 1973a), the imprecision meaning also 
to the expressions ~ t  s) and 2/3t s), one obtains 

3 / t o o \  1 , x / ( l O ) - i  
2 \2plpo//(s) 2too (vl) <~ v(o =- c "" 0.721c 

m /  '~ 1 ,, X/(17)- 1 
2 \2p~po/  >~~o '  (vl)<~vo)=- 4 c --~ 0"781c 

(5.20) 

(5.21) 
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where the velocity on the right expresses the upper velocity for which the in- 
equality on the left is fulfilled. One would expect the threshold velocities V~l) 
and v~0 so obtained to describe some deep inelastic peculiarities of the particle- 
anti-palficle collision process. 

The annihilation time imprecision of the K-G field may be similarly defined 
as for the D field, thus obtaining the result 

~i = -i<+,-[If{ 0 = @ (5.22) 

Contrary to the D field, only the imprecisions ~ 1  and 2~1 are able to define 
a threshold behaviour: 

3 ~_ 1 _~> 1 <vi>~< x/(S)c--~0"745e (5.23) 

~ + ~ 1  (vt) ~ _ ~ c  .~ 0.866c (5.24) 
2 /> 2mo' 

The 'annihilation' time imprecision <1/2po> so obtained expresses, besides 
the imprecision (mo2/2p12po), a contribution at total time imprecision. Con- 
sequently, for the K-G field, the total time imprecision contains the time- 
imprecision contribution of the free-evolution process and also the time- 
imprecision contribution arising from the virtual existence of the pairs 
annihilation processes. In this respect a well-defined meaning may be attributed 
to the total time imprecision. 

The imprecisions of the proper-time measurements implied by the pairs 
annihilation processes may be similarly obtained. Indeed, 

s )  _ Pt 
/3t - <2~o2)(s ) (5.25) 

for the one-dimensional Dirac field and 
~ 1-1 

= 2m0 ' J = 1, 2, 3 (5.26) 

for the j-dimensional K-G field. 
Actually only imprecision 2<pl/2po2>(s) implies the existence of a threshold 

velocity: 

2 P~-~o2)(s ) ~>__~12mo, <vD<~v~==-@ c (5.27) 

whose meaning will also be subsequently analysed. 

6. The Resonance-Emission Approximation of High-Energy 
Particle Production Processes 

We shall now prove that the virtual photons assumed to appear as a result 
of the particle-anti-particle annihilation processes and are able to support-at 
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least qualitatively-the existence of certain resonance emission processes. 
Indeed, for the D-particle-anti-particle annihilation process, a 'hard' photonic 
emission should assume to appear starting with the threshold velocity v(1 ). On 
the other hand, at that threshold velocity, the annihilation imprecision 
(mo/2plpo>(s) fulfils its role as a natural unit. As a consequence (Papp, 1973a) 
this time imprecision becomes a unit respecting the interaction time-shift. 

d ~(pO=N mo (6.1) 
dp o zp lP o 

where N is a parameter. Consequently 

N 
6(p0 = ~- arctg/)1 (6.2) 

No 

where the initial condition 6(0) = 0 has been considered. Performing the high- 
energy approximation 

NTr Nmo 
tg 6(pl) -~ + . . .  (6.3) 

4 Pl 

one obtains a Breit-Wigner resonance, expressed by the pole 

8Nmo p(C) 2N27rmo i 7r2N 2 (6.4) 
rr2N 2 + 16 + 16 

which produces in the complex energy plane, a resonance having, e.g. for 
N = 4, approximately the energy p~ry-~ 1-3mo and the width P/2 ~ 0"lmo. 
Similarly, considering the K-G time imprecision <l/2p0> as a unit in respect of 
the interaction time-shift, one obtains the phase-shift evaluation 

= N In P__Ao 6(~1) (6.5) 
2 mo 

Performing the previously used high-energy approximation of the logarithmic 
function, results in the existence of a resonance given by the complex energy 
pole 

p~r) _ i -~I" N 22N ~+____4_ 4N = m o -  iN2 +~---~ rno (6.6) 

Taking N = 4 one obtains p~r)~ l'6mo and 14/2 -~ 0"8too. 
The high-energy behaviour implied by the D-annihilation proper-time im- 

precision (p 1/2po2>(s) is, within the same approximation, identical with the one 
above. Indeed, the imprecision (pl/2po2>(s) expresses the standard form of the 
space imprecision corresponding to the time imprecision (1/2po>(s). Con- 
sequently the imprecision (pl/2po2>(s)has to fulfil the rote of the space unit, 
thus obtaining the phase-shift evaluation (6.5). In agreement with the above 
results, we may consider that the possibility of the annihilation and of the 
subsequent production processes and also the threshold behaviour may be 
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qualitatively stated. We must also mention that besides the existence of the 
resonance emission the possibility of the so-called radiative coherent emission 
(Horn & Silver, 1970) has to be taken into consideration. 

In these conditions some explanation may be given to the high-energy 
annihilation-production processes A + + A- ~ B + + B- + other particles or 
A + + A- -+ 2B + other particles. Using energy conservation law we may express 
the threshold behaviour of the above processes, defining the upper value of the 
rest-mass of the produced B-particle (m~ B+-) = m~ B)) by the threshold energy 
of the incoming A-particle. In this sense the rest-mass upper bounds, corre- 
sponding to the threshold velocities vO), v~l) and vi'0, are given by 

m~ B) <~ po(v(o ) ~-- 1"272mo (6.7) 

m~ B') ~po(v(1))'~ 1"443mo (6.8) 

and 
B "  t? m~ )<~po(vo))~-- l'6OOmo (6.9) 

respectively. As a consequence, the possibility of hadronic production pro- 
cesses, e.g. 

m~8)< 1191 MeV, p +~-+ 22o, ~++ 2-  (6.t0) 

m~B')< 1354 MeV, p + p ~  2Eo, 2~o, g++ E - (6.11) 

m~B") < 1501 MeV, p + i ~  22o, 22o, Z++ E- (6.12) 

is explained in this way also. On the right are the inelastic reactions which are 
compatible with the upper rest-mass calculated on the left. The presence of 
other particles has been neglected. 

Significant results referring to the high-energy behaviour of the colliding 
K-G particles may also be obtained. The upper rest-mass bounds corresponding 
to the threshold velocities [x/(5)/31c and [x/(3)/21c are given by l'5mo and 
2too respectively. In this way is explained the threshold behaviour of the high- 
energy pionic production reactions 

7r + + n- -+ 7r + + n- + 1to, 37ro (6.13) 

and 

rr + + n -  -+ rr + + n -  + n + + n - ,  rr + + 7r- + 27ro, 4fro ( 6 . 1 4 )  

respectively. Other similar cases may also be considered. 
Further developments of the above interpretations may be obtained, per- 

forming a more exact and complete systemisation of the experimental data 
and using more refined and improved approximations. 

7. Quanto-MechanieaI Peculiarities of the Coulombian Interaction 

Under the conditions of which the existence of a charged particle and anti- 
particle is considered, the presence of the electromagnetic interaction and 
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particularly the presence of the coulombian interaction is implied. Proving 
that certain aspects of the threshold behaviour implied by the imprecision 
description of the potential energy of the coutombian interaction are related 
with the threshold behaviour of the previously analysed time annihilation 
imprecisions, it may be assumed that certain responsibilities of the high- 
energy behaviour of the annihilation processes may be attributed to the 
'coulombian' interaction. 

For this purpose we shall consider the collision system of the electrostatic- 
ally interacting particle-anti-particle system. Generally the attractive conlom- 
bian interaction of two charged particles of the same rest-mass may be described 
within the same framework. We shall consider for convenience the wave-packet 
description of a K-G particle-anti-particle pair. The calculations are similar for 
the D particles. The plane-wave product corresponding to the free moving par- 
ticles takes in the centre-of-mass system (Blohinzew, 1970) the form: 

exp i(Pl. r2 - p~l)t) exp i(P2. r2 - p~2)t) = exp i(D. r - P o  t) (7.1) 

where r = rl - r2, p is the centre-of-mass momentum and Po = 2(P 2 + mo2) 1/2. 
With the coulombian interaction being a long-range interaction the incoming 
and outgoing states describing the elastic particle-anti-particle collision process 
are only approximately free states. In order to state the free evolution, the 
coulombian interaction potential e2/r has to be replaced, for example by 
e2/r exp (-er), where e -+ 0. We may now suppose that at large t-values the 
evolution of the collision system is described, in the first approximation order, 
by the free K-G wave packet 

~(r, t) = (2rr) -3/2 ~ a(p) exp i(p.  r - pot) (7.2) 

In this approximation, the average value of the potential energy may be 
defined as 

= e 2 ~(r, t), i~t 1_ ~o(r, t (7.3) 
g 

where r = Irl, t >> O, and where the wave packet has been normalised to unity. 
It may be stated that within the above conditions there is no possibility of pro- 
ducing an adequate imprecision description of the potential energy. We shall 
bypass this difficulty which requires certain mathematical conditions to guaran- 
tee the possibility of solving the imprecision evaluation problem and especially 
the evaluation problem of the binary potential energy operator in the 
momentum representation. 

In this respect let us consider that the form factor a(p) takes the particular 
form 

aQp) = 1_ a(p)f(O, ~p) (7.4) 
P 
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where 

1, 0, ~ ~ 0 , ~  
f(0,~)= 0, 0,~,~0,~ (7.5) 

and where ~o,~ expresses a certain domain defined by 

(F / ~0,~o = 0,~0 2 ~ < - - - ~ ,  0~<~o<8¢ (7.6) 

The angular parameters 60 and 6~o will be chosen to take sufficiently small- 
but non-zero-and equal values. Using the first-order 60-approximation it may 
easily be proved that the average of the momentum components with respect 
to state (7.1) are 

<Pl) = (P), (P2) = ~ (P) ~ O, (P3) = 0 (7.7) 
z 

so that, as one would expect, the form-factor (7.4) has to be associated with 
the collision products scattered along the Oxraxis. (In this way the one- 
dimensionality condition which is needed to perform the binary time descrip- 
tion and also the proper-time description of the D field has been, at least 
approximately, reproduced). As the wave-packet form-factor is influenced by 
the measuring apparatus, a certain experimental situation has been established 
by virtue of the particular form of expression (7.4). The measuring apparatus, 
which is intended to record the charged particles scattered outside the 
momentum-space domain ~o,~, become inoperative. Consequently the observ- 
able of the potential energy which is able to support the above experimental 
situation will be effectively chosen as 

?z 
Neff(f ,  0, ~o) = - -  ? (0 ,  ~)  exp ( -er)  (7.8) 

f 

where ~ expresses the effective charge parameter. The function f(0, ~0) is simi- 
larly defined in relation (7.5), but actually 

~ { r r - ~ 0  rr+~0 } 
~0,~o = 0 ,¢  - - ~ < 0 ~ < - ~ ,  O~<~o~<~o (7.9) 

where 21r ~> ~Oo >> gO and where the angular parameter g0 takes vanishingly 
small values. 

Performing the calculations in the first-order 8 0- and 8 0-approximations, 
it may be proved that 

i7(0, 4~o 1 1 
f dr r ~P) exp i(p - P') " r = 80 (p - p') P p  - p' (7.10) 
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where the modulus Ip - p'] has been replaced by the difference @ - p ' ) .  In 
these conditions we finally obtain the evaluation 

where n - ~0o/60 >> 1 and where the average on the right is performed in the 
p -momentum representation. The relations 

1 
lim P , exp i ( i g ; -  ib0)t = -izr 6(/) - p ' )  (7.12) 

t-++oo p -  p 

d 1 
~pp 6(p - p ' )  = - 2 6 ( p  - p ' ) P p  _ p--------~ (7.13) 

and 

1 
f e or sin (p - p')r  = P  (7.14) - - - - - - 7  p - p  
o 

have been used. We shall now establish the value of the effective charge requir- 
ing that 

~-~e (7.15) 

Generally the meaning of  the above relation has to be analysed in terms of 
the corresponding ~- and e-charge distribution functions. On the other hand, 
by means of relation (7.15), the existence of  a 'discrete' space described by 
the parameter n and also by the momentum-space imprecision 60 is effectively 
introduced into the collision description formalism. It will be subsequently 
proved that the above choice is the suitable one. 

We are now able to define the effective potential energy operator in the p- 
momentum representation as 

(t = - i e  2 p + p2 (7.16) 

Applying the space-time imprecision evaluation methods and averaging for 
this purpose the operator t~ with respect to the energy representation state 
[X/(Po/p)]a(P), it may be easily proved that the electrostatic potential-energy 
imprecision is 

60)  u = mo2 e 2 (7.17) 

In agreement with binary description formalism we may also choose, for con- 
venience, the expression 6u = 260)u as the operative imprecision. On the other 
hand if we assume, as usual, that the form factor a(p) takes appreciable values 
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only in a relatively small vicinity of the (p)-average, the average (7.1 t) takes 
approximately the form 

e 2 1 ((d )~ 45---s ~ e  2 arga(p  - W ( < v ) )  ( 7 . 1 8 )  
% 

where 6"~ = (1/2p) expresses the total space imprecision and the function 
N((v)) the multiplicity of the collision space-shift ((d/dp) arg a(p)) with respect 
to the total space imprecision. As the total space imprecision actually possesses 
the meaning of the effective space unit needed to 'measure' the interaction 
space-shift, it appears possible to attribute the role of the electrostatic energy 
unit to the expression 

e 2 
6~ = - ~  ~ ½moe2(v)(1 - (v)2) -1/2 (7.19) 

The necessary conditions needed to assure the measurable meaning of the 
space-shift and of the potential-energy average (7.18) are given by N((v)) > 1 
and 

N((v)) 4-~ > e2mo 2 (7.20) 

respectively, so that both conditions are fulfilled only when (v) < [ X/(2)/2]c 
(see also Jaffe & Shapiro, 1972). Consequently the coulombian interaction 
loses its observable meaning for velocities larger than the threshold velocity 
[~/(2)/2]c, also when 6"~< 6Cs. This threshold velocity also expresses the 
velocity value for which the 6u-imprecision and the 5if-unit take the common 
value 

e 2 e (7.21) __ = m o e  2 

where 6cs expresses the natural space unit. In connection with the above 
results, we are able to state expression (7.21) as the natural unit of electro- 
static potential energy. Requiring the (fi)-average to be larger than 46 (~)u, it 
results that the coulombian energy possesses a well-defined measurable meaning 
when (v) ~< (~/3/2)c. 

In the previously formulated interpretations we should have to consider that 
the natural unit expresses the lower 3u-imprecision value up to which-as a result 
of the appearance of the inelastic effects-the colliding products maintain their 
initial individuality. In this respect it has been implicitly assumed that a low- 
energy domain of the form (0, v (t0 < c) exists in which the imprecision is 
larger than the natural unit. But actually 5Cu > 5u, when (v) < [x/(2)/2]c 
and (v) > [ x/(2)/2]c respectively, so that additional interpretations are needed. 
Indeed, up to velocity [~/(2)/2]e the coulombian interaction maintains its 
initial observable significance. This fact means that the low-energy annihilation 
process A + + A- -+ 27 is only apparently 'inelastic', because there also exist the 
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possibility of the pair-production process 27 -+ A + + A-. The existence of com- 
petition between the above processes may also be assumed. On the other hand. 
for velocities larger than [~(2)/2]c, properly inelastic effects arise. In this last 
case the inelasticaUy emitted photons-which have to change the initial signi- 
ficance of the coulombian interaction-are able to support new particle pro- 
duction processes. Consequently, up to the threshold velocity [%/(2)/2]c, one 
would expect the existence of a virtual or 'elastic' photonic emission process, 
whereas the properly inelastic photons have to appear only for velocities larger 
than [ x/(2)/2]e, when the role of the 6u-imprecision becomes operative. 

In such a situation-and generally in similar conditions-the observable 
meaning of the coulombian interaction has to be directly expressed in respect 
of the natural unit 6Cu. Indeed, considering that the electrostatic potential 
energy is able to possess a measurable meaning only when 

e2 e2 (7.22) 
N ((v>) 45es 

where N((v))> 1, one reobtains the threshold velocity [x/(2)/2]c. Thus, the 
consistency of the above interpretations is proved. It may also be verified that 
the threshold velocity [ X/(2)/2]c does not depend on the choice of discrete- 
space parameters n and 60. 

One can now easily remark that the threshold velocities (x/3/2)c and 
(x/2/2)c are identical to the ones of (5.24) and (5.27) respectively. It may 
easily be proved-neglecting the threshold velocity v(1) = [x/(5) - 1/2]c-that  
the values taken by the 6g-unit (and the 6u-imprecision) for the remaining 
previously calculated threshold velocities are relatively adjacent, and may be 
mutually covered within extended binary equivalence. In these conditions we 
may conclude that a mutual connection between the threshold behaviour of 
the pairs annihilation processes and the threshold peculiarities of the (effective) 
coulombian interaction may at least be qualitatively established. We should also 
state that the threshold velocities defined in Section 5 are not operative with 
respect to the electrons. Indeed, there are no (known) particles whose rest- 
mass value is included in the interval (m0, 2mo], where mo is the rest-mass of 
the electron. In such conditions, a further suitable threshold velocity, taking 
sufficiently large values, has yet to be defined. For this purpose, as we shall 
prove in the following section, the existence of a separate natural unit of space 
will be introduced. 

8. The Natural Electromagnetic Space Unit 

The effective unit 6fi mathematically, is, an unbounded increasing function 
of the velocity. For this purpose certain limitations may be imposed on the 
unit requiring that 

46ff < mo c2 (8.1) 
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In this respect, we mention that an effective unit becomes physically meaning- 
less when it takes too large values. With the entity 6~ also being generally an 
energy unit, the above inequality is needed in order to preserve the possibility 
of performing energy measurements. 

As a consequence 

e 2 
~ > - -  ( 8 . 2 )  moo 2 

so that a new lower bound has to be imposed on the total-space imprecision. 
In this way the classical electromagnetic particle radius 

8(era) s - e 2 e 2 
moc 2 = ftc 8cs (8.3) 

may be defined, in terms of the quanto-mechanicalimprecision description, 
as the natural electromagnetic space unit. Setting 6s = ~(em)s, results in the 
existence of an 'electromagnetic' energy-threshold given by 

t~2c2~/2 
p~em)=moe2 1 +-7a-- ) ~ 137moc 2 (8.4) 

and also the existence of a new threshold velocity given by 

v(em) = (1 + h~c=) -t/2 c --~ 0.999974c (8.5) 

which possesses the order of magnitude needed to explain qualitatively the 
deep inelastic electron-positron production processes. The imprecisions ~6~ 
and 28g imply approximately the energy thresholds 225moc 2 and 274moc 2 
respectively. This latter threshold energy allows the existence of the extreme 
high-energy inclusive reaction e + + e- -+ pions, which has recently been taken 
as evidence (see e.g. Bacci et aL, 1972). It may also be remarked that the 
natural electromagnetic space unit is approximately equal to the double value 
of the pionic natural space unit ~/m~)c. By virtue of this coincidence one 
may assume, at sufficiently high energies, the possibility of certain co- 
existence effects between the electromagnetic and the hadronic structure of 
the matter. It may now be proved, in agreement with previous results, that 
such an assumption is physically meaningful. Indeed at s~ufficiently high 
energies the coulombian interaction loses its observable meaning and is, in 
fact, substituted by other interactions, particularly by the strong interaction. 
In this sense we have to understand the previously formulated assumption that 
only certain responsibilities of high-energy particle production processes may 
be attributed to the 'coulombian' interaction. 

We may thus conclude that, in order to explain high-energy annihila- 
tion processes, and especially the extreme high-energy electron-positron annihila- 
tion process, the existence of the natural electromagnetic space unit is needed. 
In these conditions, as a consequence of the fact that 8(ern)s ~ 1-~78cs, we find 
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the existence of a relatively large threshold-energy 'gap' between the threshold 
energy 2too (which is the largest threshold energy calculated in Section 5) and 
the threshold energies calculated above. 

For instance, the existence of the gravitational interaction has been neglec- 
ted. The imprecision description of the gravitational interaction is, up to the 
coupling constant, identical to that of the coulombian interaction. Consequently, 
in order to obtain the imprecision description of the gravitational interaction, 
the fine-structure constant e2/lic has to be substituted by the gravitational 
coupling constant g(rno2/ltc). The value of this latter coupling constant is 
practically negligible with respect to the fine-structure constant. In fact the 
gravitational interaction loses its observable meaning at the same threshold 
velocity of [X/(2)/2]c. The 'gravitational' space unit is given by g(mo/2c2), so 
that the 'gravitational' threshold velocity takes the form 

g2rno4t_1/2 
v (gray) = 1 + h2c---5- ] c 

which is practically identical to c. 

9. Conclusions 
Using imprecision description methods we have analysed some qualitative 

and quantitative aspects of the threshold behaviour implied by the existence 
of the time- and proper-time imprecisions associated with the D and K-G pairs 
annihilation (and subsequent) production processes. It is significant that 
threshold behaviour is able to be supported, at least qualitatively, by the im- 
precisions description of the elementary coulombian and gravitational inter- 
actions. Thus the imprecision description formalism is able to elucidate in a 
relatively simple manner profound peculiarities of the high-energy behaviour 
of the collision processes. We are also able to consider that the essential physical 
content of the imprecision description formalism consists of explaining the 
role and meaning of the implied threshold energies or threshold velocities. 

Qualitative and quantitative distinctions between the proper-time and time 
descriptions of the D and K-G fields have been taken as evidence. Thus the 
proper time is an observable which may be defined irrespective of the rest- 
state or motion-state of the reference frame, whereas the time is an observable 
which may be defined, along an arbitrary direction, only with respect to 
moving particles. On the other hand, the imprecision associated with annihila- 
tion processes is sensitive in respect of statistics, and the time- and proper-time 
measurements respectively. 

It has been proved that the extension of the binary description formalism 
to the 'matter', and especially to the coulombian and gravitational interactions, 
require additional mathematical conditions which effectively express the 
existence of a discrete space. In this way, in agreement with opinions expressed 
by Cole (1972), certain modifications of the actual concept of the electro- 
static potential energy are implied. Finally we must mention that interpreta- 
tions formulated throughout this paper, which are rather qualitative, are 
liable to amendment and agreement with a more complete and systematic 
set of experimental data required. 
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